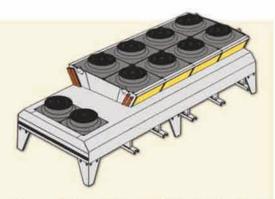


Original manufactured equipment

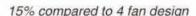
Superior Quality
Heat Exchange Equipment
packaged with
BITZER Rack Systems

Why "V" Block Condensers?


The space saving compact design of the Buffalo Trident "VB Series" minimizes the the required condenser deck footprint. This offers key savings in the construction of condenser platforms. The aluminium light weight durable housing further reduces the roof loading compared to alternative technologies.

Left: 3 x"VB Series" Condensers installed. These are special circuit as DRY COOLERS. (Dry Cooler configuration on request.)

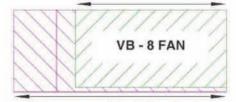
COMPACT DESIGN


The compact size of the "VB Series" addresses the common demand for increased condenser capacity in retrofit retail modernization projects. Up to 40% more capacity available using the same area constraints.

- Reduction in footprint size between 15%-40%.
- Reduction in space requirements between condenser for free ventilation.
- Larger capacities available as a single model for quicker

Above: Buffalo Trident "VB Series" V-Block Condenser shown superimposed over a similar capacity standard horizontal coil condenser.

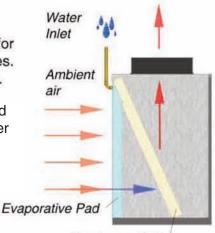
Footprint space saving of the "VB Series" compared to horizontal coil designs of similar capacity


41% compared to 6 fan design

16% compared to 6 fan design

36% compared to 8 fan design

17% compared to 8 fan design



32% compared to 10 fan design

EVAPORATIVE PRE-COOLERS

Evaporative pre-coolers offer solutions for environments with high peak ambient temperatures. This allows for an increase in condenser capacity.

The Buffalo Trident VB Series has been extended to include an integrated pre-cooling system. Refer to your Buffalo Trident representative for further information on Hydro Boost Systems.

Buffalo Trident Technology at its best!

The VB Series combines innovation with the long proven manufacturing techniques developed by Buffalo Trident.

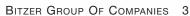
The "VB Series" offers many qualities to satisfy your long term investment.

HOUSING - Strength in material and design[Marine grade embossed stucco aluminium alloy]

• The marine grade aluminium alloy has proven long term durability against coastal environments and other harsh conditions, full aluminium support rails prevent corrosion between the condenser feet and support structure.

- The base fin stock is a corrosion resistant alloy which is more durable than other standard fin material.
- The epoxy treatment is a European certified bonding process which provides superior resistance to corrosion over alernative coating methods.
- Independently certified salt spray tests confirm superior suitability.

SEMI-FLOATING COIL - Proven reliable design


- The header tube design is semi-floating to reduce the risk of damage from external influences, like compressor gas pulsations.
- The semi-floating header allows for expansion and contraction in the header and entry tubes caused by extreme temperature fluctuations.

HANDLING AND SAFETY

- The condenser is delivered completely assembled reducing on site labour and installation time, including fork lift access and crane lifting lugs.(note: extended fork lift tynes are required)
- The condenser fan deck is only 1.825m high. This enables direct on site fan servicing. Most safety regulations don't require additional safety rails at this height. (Refer to your Occupational Health and Safety regulations)

FINE DETAILS

- 1/2" rifle bore tubing provides additional heat transfer and better oil return.
- Multiple fan options available to match most performance and noise requirements.
- EC fan technology can be factory fitted. (optional)
- A large internal plenum providing even air flow and increased reliability and performance.
- Each fan cell is completely separated to allow for fan cycling. This design increases the efficiency of the system during part load conditions.
- The crated unit fits into standard shipping containers it also fits economically onto road transport vehicles.

VB Series Condensers - 4 pole "4P"

Condenser Capacity - Total Heat Rejection (Kilowatts)

R22		VB-4P		High Sp	eed (Co	nnect in	Delta ∆	()				
TD/K	VB-4-4R-4P	VB-4-5R-4P	VB-4-6R-4P	VB-6-4R-4P	VB-6-5R-4P	VB-6-6R-4P	VB-8-4R-4P	VB-8-5R-4P	VB-8-6R-4P	VB-10-4R-4P	VB-10-5R-4P	VB-10-6R-4F
1	18.5	20.4	21.6	28.6	30.9	32.4	38.1	41.2	43.2	47.4	51.7	53.9
5	92.3	102.1	107.8	143.1	154.7	161.8	190.3	206.2	216.0	236.8	258.4	269.7
10	184.7	204.3	215.5	286.2	309.4	323.7	380.6	412.4	432.0	473.5	516.7	539.4
15	277.0	306.4	323.3	429.3	464.1	485.5	570.9	618.6	648.0	710.3	775.1	809.1
20	369.4	408.6	431.1	572.3	618.8	647.4	761.2	824.8	864.0	947.0	1033.5	1078.8
				Low Sp	eed (Co	nnect in	Star 人)				
1	15.2	16.5	17.2	23.2	24.8	25.8	31.0	33.1	34.3	38.4	41.4	42.8
5	76.1	82.4	86.0	116.2	123.9	128.9	155.2	165.6	171.7	191.8	206.9	213.9
10	152.1	164.9	171.9	232.5	247.7	257.8	310.4	331.1	343.5	383.7	413.7	427.8
15	228.2	247.3	257.9	348.7	371.6	386.7	465.5	496.7	515.2	575.5	620.6	641.7
20	304.3	329.8	343.9	465.0	495.4	515.6	620.7	662.2	687.0	767.3	827.5	855.7

R40	4A	VB-4P		High Sp	eed (Co	nnect in	Delta Δ	()				
TD/K	VB-4-4R-4P	VB-4-5R-4P	VB-4-6R-4P	VB-6-4R-4P	VB-6-5R-4P	VB-6-6R-4P	VB-8-4R-4P	VB-8-5R-4P	VB-8-6R-4P	VB-10-4R-4P	VB-10-5R-4P	VB-10-6R-4
1	19.4	21.5	22.6	30.1	32.5	34.0	40.0	43.3	45.4	49.7	54.3	56.7
5	97.0	107.3	113.2	150.3	162.5	170.0	199.9	216.6	226.9	248.7	271.4	283.3
10	194.0	214.6	226.4	300.6	325.0	340.0	399.8	433.2	453.8	497.4	542.8	566.6
15	291.0	321.9	339.6	450.9	487.5	510.0	599.7	649.8	680.7	746.1	814.2	849.9
20	388.0	429.2	452.8	601.2	650.0	680.0	799.6	866.4	907.6	994.8	1085.6	1133.2
				Low Sp	eed (Co	nnect in	Star 人)				
1	16.0	17.3	18.1	24.4	26.0	27.1	32.6	34.8	36.1	40.3	43.5	44.9
5	79.9	86.6	90.3	122.1	130.1	135.4	163.0	173.9	180.4	201.5	217.3	224.7
10	159.8	173.2	180.6	244.2	260.2	270.8	326.0	347.8	360.8	403.0	434.6	449.4
15	239.7	259.8	270.9	366.3	390.3	406.2	489.0	521.7	541.2	604.5	651.9	674.1
20	319.6	346.4	361.2	488.4	520.4	541.6	652.0	695.6	721.6	806.0	869.2	898.8

R40	7C	VB-4P		High Sp	eed (Co	nnect in	Delta Δ	()				
TD/K	VB-4-4R-4P	VB-4-5R-4P	VB-4-6R-4P	VB-6-4R-4P	VB-6-5R-4P	VB-6-6R-4P	VB-8-4R-4P	VB-8-5R-4P	VB-8-6R-4P	VB-10-4R-4P	VB-10-5R-4P	VB-10-6R-4F
1	17.9	19.8	20.9	27.8	30.0	31.4	36.9	40.0	41.9	46.0	50.2	52.4
5	89.6	99.1	104.6	138.9	150.2	157.1	184.7	200.1	209.7	229.8	250.8	261.8
10	179.3	198.3	209.2	277.8	300.3	314.2	369.4	400.3	419.3	459.6	501.5	523.5
15	268.9	297.4	313.8	416.6	450.5	471.2	554.1	600.4	629.0	689.4	752.3	785.3
20	358.5	396.6	418.4	555.5	600.6	628.3	738.8	800.6	838.6	919.2	1003.1	1047.1
				Low Sp	eed (Co	nnect in	Star 人)				
1	14.8	16.0	16.7	22.6	24.0	25.0	30.1	32.1	33.3	37.2	40.2	41.5
5	73.8	80.0	83.4	112.8	120.2	125.1	150.6	160.7	166.7	186.2	200.8	207.6
10	147.7	160.0	166.9	225.6	240.4	250.2	301.2	321.4	333.4	372.4	401.6	415.2
15	221.5	240.1	250.3	338.5	360.6	375.3	451.8	482.1	500.1	558.6	602.4	622.9
20	295.3	320.1	333.7	451.3	480.8	500.4	602.4	642.7	666.8	744.7	803.1	830.5

R13	4a	VB-4P		High Sp	eed (Co	nnect in	Delta Δ	()				
TD/K	VB-4-4R-4P	VB-4-5R-4P	VB-4-6R-4P	VB-6-4R-4P	VB-6-5R-4P	VB-6-6R-4P	VB-8-4R-4P	VB-8-5R-4P	VB-8-6R-4P	VB-10-4R-4P	VB-10-5R-4P	VB-10-6R-4
1	17.7	19.6	20.7	27.5	29.7	31.1	36.5	39.6	41.5	45.5	49.6	51.8
5	88.7	98.1	103.5	137.4	148.5	155.4	182.7	198.0	207.4	227.3	248.1	258.9
10	177.3	196.1	206.9	274.7	297.1	310.8	365.4	395.9	414.8	454.6	496.1	517.9
15	266.0	294.2	310.4	412.1	445.6	466.1	548.1	593.9	622.2	681.9	744.2	776.8
20	354.6	392.3	413.9	549.5	594.1	621.5	730.8	791.9	829.5	909.2	992.2	1035.7
				Low Sp	eed (Co	nnect in	Star 人)				
1	14.6	15.8	16.5	22.3	23.8	24.8	29.8	31.8	33.0	36.8	39.7	41.1
5	73.0	79.2	82.5	111.6	118.9	123.8	149.0	158.9	164.9	184.2	198.6	205.4
10	146.1	158.3	165.1	223.2	237.8	247.5	298.0	317.9	329.8	368.3	397.2	410.8
15	219.1	237.5	247.6	334.8	356.7	371.3	446.9	476.8	494.7	552.5	595.8	616.1
20	292.1	316.6	330.1	446.4	475.6	495.0	595.9	635.8	659.5	736.7	794.4	821.5

Capacity Correction Fa	ctors		
REFRIG.	R22	R507A	R407B
CAP. MULTI.	1.0	1.045	0.975

VB Series Condensers - 6 pole "Q"

Condenser Capacity - Total Heat Rejection (Kilowatts)

R22		VB-Q		High Sp	eed (Co	nnect in	Delta ∆	.)				
TD/K	VB-4-4R-Q	VB-4-5R-Q	VB-4-6R-Q	VB-6-4R-Q	VB-6-5R-Q	VB-6-6R-Q	VB-8-4R-Q	VB-8-5R-Q	VB-8-6R-Q	VB-10-4R-Q	VB-10-5R-Q	VB-10-6R-0
1	19.6	21.3	22.1	30.3	32.3	33.2	40.3	43.0	44.3	50.2	53.9	55.3
5	98.0	106.5	110.5	151.6	161.3	166.0	201.3	214.9	221.4	251.1	269.3	276.4
10	195.9	213.1	221.1	303.1	322.5	332.1	402.5	429.7	442.9	502.3	538.6	552.7
15	293.9	319.6	331.6	454.7	483.8	498.1	603.8	644.6	664.3	753.4	808.0	829.1
20	391.8	426.1	442.1	606.2	645.1	664.1	805.0	859.5	885.7	1004.6	1077.3	1105.5
				Low Sp	eed (Co	nnect in	Star 人)				
1	16.3	17.5	18.0	25.2	26.4	26.9	33.7	35.3	35.9	41.7	44.2	44.9
5	81.5	87.3	89.8	126.2	132.2	134.6	168.3	176.7	179.4	208.6	220.9	224.3
10	163.0	174.6	179.5	252.5	264.5	269.2	336.6	353.4	358.7	417.2	441.7	448.6
15	244.5	261.9	269.3	378.7	396.7	403.8	504.9	530.1	538.1	625.7	662.6	672.9
20	326.0	349.2	359.1	504.9	528.9	538.5	673.3	706.8	717.4	834.3	883.5	897.2

R40	4A	VB-Q		High Sp	eed (Co	nnect in	Delta ∆	()				
TD/K	VB-4-4R-Q	VB-4-5R-Q	VB-4-6R-Q	VB-6-4R-Q	VB-6-5R-Q	VB-6-6R-Q	VB-8-4R-Q	VB-8-5R-Q	VB-8-6R-Q	VB-10-4R-Q	VB-10-5R-Q	VB-10-6R-0
1	20.6	22.4	23.2	31.8	33.9	34.9	42.3	45.1	46.5	52.8	56.6	58.1
5	102.9	111.9	116.1	159.2	169.4	174.4	211.4	225.7	232.6	263.8	282.9	290.3
10	205.8	223.8	232.2	318.4	338.8	348.8	422.8	451.4	465.2	527.6	565.8	580.6
15	308.7	335.7	348.3	477.6	508.2	523.2	634.2	677.1	697.8	791.4	848.7	870.9
20	411.6	447.6	464.4	636.8	677.6	697.6	845.6	902.8	930.4	1055.2	1131.6	1161.2
				Low Sp	eed (Co	nnect in	Star 人)				
1	17.1	18.3	18.9	26.5	27.8	28.3	35.4	37.1	37.7	43.8	46.4	47.1
5	85.6	91.7	94.3	132.6	138.9	141.4	176.8	185.6	188.4	219.1	232.0	235.6
10	171.2	183.4	188.6	265.2	277.8	282.8	353.6	371.2	376.8	438.2	464.0	471.2
15	256.8	275.1	282.9	397.8	416.7	424.2	530.4	556.8	565.2	657.3	696.0	706.8
20	342.4	366.8	377.2	530.4	555.6	565.6	707.2	742.4	753.6	876.4	928.0	942.4

R40	7C	VB-Q		High Sp	eed (Co	nnect in	Delta Δ	()				
TD/K	VB-4-4R-Q	VB-4-5R-Q	VB-4-6R-Q	VB-6-4R-Q	VB-6-5R-Q	VB-6-6R-Q	VB-8-4R-Q	VB-8-5R-Q	VB-8-6R-Q	VB-10-4R-Q	VB-10-5R-Q	VB-10-6R-0
1	19.0	20.7	21.5	29.4	31.3	32.2	39.1	41.7	43.0	48.8	52.3	53.6
5	95.1	103.4	107.3	147.1	156.5	161.1	195.3	208.5	214.9	243.8	261.4	268.2
10	190.2	206.8	214.6	294.2	313.1	322.3	390.7	417.1	429.8	487.5	522.8	536.5
15	285.2	310.2	321.8	441.3	469.6	483.4	586.0	625.6	644.8	731.3	784.2	804.7
20	380.3	413.6	429.1	588.4	626.1	644.6	781.3	834.2	859.7	975.0	1045.6	1072.9
				Low Sp	eed (Co	nnect in	Star 人)				
1	15.8	16.9	17.4	24.5	25.7	26.1	32.7	34.3	34.8	40.5	42.9	43.5
5	79.1	84.7	87.1	122.5	128.3	130.7	163.4	171.5	174.1	202.4	214.4	217.7
10	158.2	169.5	174.3	245.0	256.7	261.3	326.7	343.0	348.2	404.9	428.7	435.4
15	237.3	254.2	261.4	367.6	385.0	392.0	490.1	514.5	522.2	607.3	643.1	653.1
20	316.4	338.9	348.5	490.1	513.4	522.6	653.5	686.0	696.3	809.8	857.5	870.8

R13	4a	VB-Q		High Sp	eed (Co	nnect in	Delta Δ)				
TD/K	VB-4-4R-Q	VB-4-5R-Q	VB-4-6R-Q	VB-6-4R-Q	VB-6-5R-Q	VB-6-6R-Q	VB-8-4R-Q	VB-8-5R-Q	VB-8-6R-Q	VB-10-4R-Q	VB-10-5R-Q	VB-10-6R-0
1	18.8	20.5	21.2	29.1	31.0	31.9	38.6	41.3	42.5	48.2	51.7	53.1
5	94.1	102.3	106.1	145.5	154.8	159.4	193.2	206.3	212.6	241.1	258.6	265.3
10	188.1	204.6	212.2	291.0	309.7	318.8	386.4	412.6	425.2	482.2	517.1	530.7
15	282.2	306.8	318.3	436.5	464.5	478.2	579.7	618.9	637.8	723.3	775.7	796.0
20	376.2	409.1	424.5	582.0	619.3	637.6	772.9	825.2	850.4	964.5	1034.3	1061.3
				Low Sp	eed (Co	nnect in	Star 人)				
1	15.6	16.8	17.2	24.2	25.4	25.8	32.3	33.9	34.4	40.1	42.4	43.1
5	78.2	83.8	86.2	121.2	127.0	129.2	161.6	169.6	172.2	200.3	212.0	215.3
10	156.5	167.6	172.4	242.4	253.9	258.5	323.2	339.3	344.4	400.5	424.1	430.7
15	234.7	251.4	258.6	363.6	380.9	387.7	484.8	508.9	516.6	600.8	636.1	646.0
20	313.0	335.3	344.8	484.8	507.8	517.0	646.4	678.6	688.8	801.0	848.2	861.4

 Capacity

 Correction Factors

 REFRIG.
 R22
 R507A
 R407B

 CAP. MULTI.
 1.0
 1.045
 0.975

VB Series Condensers - 8 pole "NQ"

Condenser Capacity - Total Heat Rejection (Kilowatts)

R22	22 VB-NQ			High Sp	eed (Co	nnect in	Delta Δ)				
TD/K	VB-4-4R-NQ	VB-4-5R-NQ	VB-4-6R-NQ	VB-6-4R-NQ	VB-6-5R-NQ	VB-6-6R-NQ	VB-8-4R-NQ	VB-8-5R-NQ	VB-8-6R-NQ	VB-10-4R-NQ	VB-10-5R-NO	VB-10-6R-NO
1	16.3	17.5	18.0	25.2	26.5	27.1	33.6	35.4	36.0	41.6	44.2	45.0
5	81.6	87.6	90.2	126.0	132.3	135.3	168.0	176.9	180.2	208.1	221.1	225.1
10	163.2	175.2	180.5	252.1	264.7	270.6	336.1	353.8	360.4	416.2	442.1	450.3
15	244.8	262.8	270.7	378.1	397.0	405.8	504.1	530.6	540.6	624.3	663.2	675.4
20	326.3	350.3	361.0	504.2	529.3	541.1	672.1	707.5	720.9	832.4	884.2	900.6
				Low Spe	eed (Cor	nect in S	Star 人)					
1	13.9	14.5	14.7	20.8	21.6	22.0	27.9	28.8	29.3	34.4	36.0	36.3
5	69.3	72.6	73.3	104.2	108.2	110.0	139.4	144.0	146.5	171.8	180.0	181.5
10	138.6	145.3	146.6	208.5	216.5	219.9	278.7	288.1	293.0	343.7	360.0	363.1
15	207.9	217.9	219.9	312.7	324.7	329.9	418.1	432.1	439.5	515.5	540.1	544.6
20	277.2	290.6	293.2	417.0	433.0	439.8	557.5	576.2	586.1	687.3	720.1	726.2

R40	4A	VB-NQ		High Sp	eed (Co	nnect in	Delta Δ)				
TD/K	VB-4-4R-NQ	VB-4-5R-NQ	VB-4-6R-NQ	VB-6-4R-NQ	VB-6-5R-NQ	VB-6-6R-NQ	VB-8-4R-NQ	VB-8-5R-NQ	VB-8-6R-NQ	VB-10-4R-NQ	VB-10-5R-NQ	VB-10-6R-N
1	17.1	18.4	19.0	26.5	27.8	28.4	35.3	37.2	37.9	43.7	46,4	47.3
5	85.7	92.0	94.8	132.4	139.0	142.1	176.5	185.8	189.3	218.6	232.2	236.5
10	171.4	184.0	189.6	264.8	278.0	284.2	353.0	371.6	378.6	437.2	464.4	473.0
15	257.1	276.0	284.4	397.2	417.0	426.3	529.5	557.4	567.9	655.8	696.6	709.5
20	342.8	368.0	379.2	529.6	556.0	568.4	706.0	743.2	757.2	874.4	928.8	946.0
				Low Spe	eed (Cor	nect in S	Star 人)					
1	14.6	15.3	15.4	21.9	22.7	23.1	29.3	30.3	30.8	36.1	37.8	38.1
5	72.8	76.3	77.0	109.5	113.7	115.5	146.4	151.3	153.9	180.5	189.1	190.7
10	145.6	152.6	154.0	219.0	227.4	231.0	292.8	302.6	307.8	361.0	378.2	381.4
15	218.4	228.9	231.0	328.5	341.1	346.5	439.2	453.9	461.7	541.5	567.3	572.1
20	291.2	305.2	308.0	438.0	454.8	462.0	585.6	605.2	615.6	722.0	756.4	762.8

R40	407C VB-NQ			High Sp	eed (Co	nnect in	Delta Δ)				
TD/K	VB-4-4R-NQ	VB-4-5R-NQ	VB-4-6R-NQ	VB-6-4R-NQ	VB-6-5R-NQ	VB-6-6R-NQ	VB-8-4R-NQ	VB-8-5R-NQ	VB-8-6R-NQ	VB-10-4R-NQ	VB-10-5R-NQ	VB-10-6R-NO
1	15.8	17.0	17.5	24.5	25.7	26.3	32.6	34.3	35.0	40.4	42.9	43.7
5	79.2	85.0	87.6	122.3	128.4	131.3	163.1	171.7	174.9	202.0	214.6	218.5
10	158.4	170.0	175.2	244.7	256.9	262.6	326.2	343.4	349.8	404.0	429.1	437.1
15	237.6	255.0	262.8	367.0	385.3	393.9	489.3	515.0	524.7	606.0	643.7	655.6
20	316.7	340.0	350.4	489.4	513.7	525.2	652.3	686.7	699.7	807.9	858.2	874.1
				Low Spe	eed (Cor	nect in S	Star 人)					
11	13.5	14.1	14.2	20.2	21.0	21.3	27.1	28.0	28.4	33.4	34.9	35.2
5	67.3	70.5	71.1	101.2	105.1	106.7	135.3	139.8	142.2	166.8	174.7	176.2
10	134.5	141.0	142.3	202.4	210.1	213.4	270.5	279.6	284.4	333.6	349.5	352.4
15	201.8	211.5	213.4	303.5	315.2	320.2	405.8	419.4	426.6	500.3	524.2	528.6
20	269.1	282.0	284.6	404.7	420.2	426.9	541.1	559.2	568.8	667.1	698.9	704.8

R13	4a	VB-NQ		High Sp	eed (Co	nnect in	Delta Δ)				
TD/K	VB-4-4R-NQ	VB-4-5R-NQ	VB-4-6R-NQ	VB-6-4R-NQ	VB-6-5R-NQ	VB-6-6R-NQ	VB-8-4R-NQ	VB-8-5R-NQ	VB-8-6R-NQ	VB-10-4R-NQ	VB-10-5R-NQ	VB-10-6R-NO
1	15.7	16.8	17.3	24.2	25.4	26.0	32.3	34.0	34.6	40.0	42.4	43.2
5	78.3	84.1	86.6	121.0	127.0	129.9	161.3	169.8	173.0	199.8	212.2	216.2
10	156.7	168.2	173.3	242.0	254.1	259.8	322.6	339.6	346.0	399.6	424.5	432.3
15	235.0	252.3	259.9	363.0	381.1	389.6	484.0	509.5	519.1	599.4	636.7	648.5
20	313.3	336.4	346.6	484.1	508.2	519.5	645.3	679.3	692.1	799.2	848.9	864.6
				Low Spe	eed (Cor	nect in S	Star 人)					
1	13.3	13.9	14.1	20.0	20.8	21.1	26.8	27.7	28.1	33.0	34.6	34.9
5	66.5	69.7	70.4	100.1	103.9	105.6	133.8	138.3	140.7	165.0	172.8	174.3
10	133.1	139.5	140.8	200.2	207.8	211.1	267.6	276.6	281.3	330.0	345.7	348.6
15	199.6	209.2	211.1	300.2	311.8	316.7	401.4	414.9	422.0	494.9	518.5	522.9
20	266.2	279.0	281.5	400.3	415.7	422.3	535.2	553.2	562.7	659.9	691.3	697.2

Capacity Correction Fa	ctors		
REFRIG.	R22	R507A	R407B
CAP. MULTI.	1.0	1.045	0.975

VB Series Condensers - 8 pole "SQ"

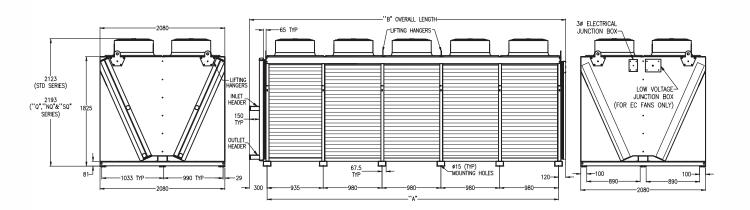
Condenser Capacity - Total Heat Rejection (Kilowatts)

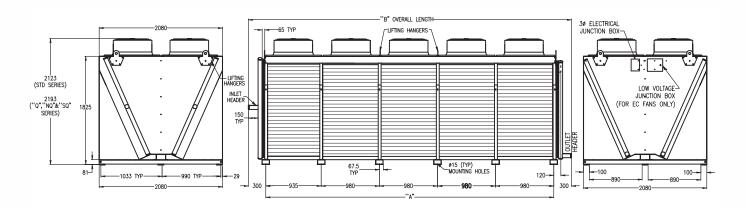
R22		VB-SQ		High Sp	eed (Co	nnect in	Delta Δ)				
TD/K	VB-4-4R-SQ	VB-4-5R-SQ	VB-4-6R-SQ	VB-6-4R-SQ	VB-6-5R-SQ	VB-6-6R-SQ	VB-8-4R-SQ	VB-8-5R-SQ	VB-8-6R-SQ	VB-10-4R-SQ	VB-10-5R-SQ	VB-10-6R-SQ
1	15.7	16.7	17.1	24.0	25.1	25.6	32.0	33.5	34.2	39.6	41.9	42.5
5	78.3	83.5	85.5	120.0	125.4	128.2	160.2	167.6	170.9	198.1	209.3	212.4
10	156.7	167.0	171.0	240.1	250.8	256.5	320.4	335.1	341.8	396.2	418.7	424.8
15	235.0	250.5	256.5	360.1	376.1	384.7	480.7	502.7	512.7	594.3	628.0	637.2
20	313.4	334.0	342.0	480.2	501.5	512.9	640.9	670.2	683.5	792.4	837.4	849.6
				Low Spe	eed (Cor	nect in S	Star 人)					
1	11.5	11.7	11.7	17.0	17.5	17.5	22.6	23.2	23.3	28.4	29.2	28.9
5	57.3	58.7	58.3	85.0	87.6	87.3	113.2	116.1	116.4	142.2	145.8	144.4
10	114.6	117.5	116.5	170.0	175.2	174.6	226.4	232.3	232.9	284.5	291.7	288.8
15	171.9	176.2	174.8	255.0	262.8	261.9	339.6	348.4	349.3	426.7	437.5	433.3
20	229.2	235.0	233.0	340.1	350.3	349.2	452.8	464.6	465.7	568.9	583.4	577.7

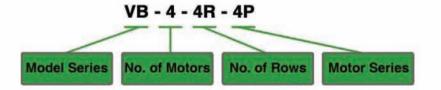
R40	4A	VB-SQ		High Sp	eed (Co	nnect in	Delta Δ)				
TD/K	VB-4-4R-SQ	VB-4-5R-SQ	VB-4-6R-SQ	VB-6-4R-SQ	VB-6-5R-SQ	VB-6-6R-SQ	VB-8-4R-SQ	VB-8-5R-SQ	VB-8-6R-SQ	VB-10-4R-SQ	VB-10-5R-SQ	VB-10-6R-SC
1	16.5	17.5	18.0	25.2	26.3	26.9	33.7	35.2	35.9	41.6	44.0	44.6
5	82.3	87.7	89.8	126.1	131.7	134.7	168.3	176.0	179.5	208.1	219.9	223.1
10	164.6	175.4	179.6	252.2	263.4	269.4	336.6	352.0	359.0	416.2	439.8	446.2
15	246.9	263.1	269.4	378.3	395.1	404.1	504.9	528.0	538.5	624.3	659.7	669.3
20	329.2	350.8	359.2	504.4	526.8	538.8	673.2	704.0	718.0	832.4	879.6	892.4
				Low Spe	eed (Cor	nect in S	Star 人)					
1	12.0	12.3	12.2	17.9	18.4	18.3	23.8	24.4	24.5	29.9	30.6	30.3
5	60.2	61.7	61.2	89.3	92.0	91.7	118.9	122.0	122.3	149.4	153.2	151.7
10	120.4	123.4	122.4	178.6	184.0	183.4	237.8	244.0	244.6	298.8	306.4	303.4
15	180.6	185.1	183.6	267.9	276.0	275.1	356.7	366.0	366.9	448.2	459.6	455.1
20	240.8	246.8	244.8	357.2	368.0	366.8	475.6	488.0	489.2	597.6	612.8	606.8

R40	7C	VB-SQ		High Sp	eed (Co	nnect in	Delta Δ)				
TD/K	VB-4-4R-SQ	VB-4-5R-SQ	VB-4-6R-SQ	VB-6-4R-SQ	VB-6-5R-SQ	VB-6-6R-SQ	VB-8-4R-SQ	VB-8-5R-SQ	VB-8-6R-SQ	VB-10-4R-SQ	VB-10-5R-SQ	VB-10-6R-SC
1	15.2	16.2	16.6	23.3	24.3	24.9	31.1	32.5	33.2	38.5	40.6	41.2
5	76.0	81.0	83.0	116.5	121.7	124.5	155.5	162.6	165.9	192.3	203.2	206.1
10	152.1	162.1	166.0	233.0	243.4	248.9	311.0	325.2	331.7	384.6	406.4	412.3
15	228.1	243.1	248.9	349.5	365.1	373.4	466.5	487.9	497.6	576.9	609.6	618.4
20	304.2	324.1	331.9	466.1	486.8	497.9	622.0	650.5	663.4	769.1	812.8	824.6
				Low Spe	eed (Cor	nect in S	Star 人)					
1	11.1	11.4	11.3	16.5	17.0	16.9	22.0	22.5	22.6	27.6	28.3	28.0
5	55.6	57.0	56.5	82.5	85.0	84.7	109.9	112.7	113.0	138.0	141.6	140.2
10	111.2	114.0	113.1	165.0	170.0	169.5	219.7	225.5	226.0	276.1	283.1	280.3
15	166.9	171.0	169.6	247.5	255.0	254.2	329.6	338.2	339.0	414.1	424.7	420.5
20	222.5	228.0	226.2	330.1	340.0	338.9	439.5	450.9	452.0	552.2	566.2	560.7

R13	4a	VB-SQ		High Sp	eed (Co	nnect in	Delta Δ					
TD/K	VB-4-4R-SQ	VB-4-5R-SQ	VB-4-6R-SQ	VB-6-4R-SQ	VB-6-5R-SQ	VB-6-6R-SQ	VB-8-4R-SQ	VB-8-5R-SQ	VB-8-6R-SQ	VB-10-4R-SQ	VB-10-5R-SQ	VB-10-6R-SC
1	15.0	16.0	16.4	23.1	24.1	24.6	30.8	32.2	32.8	38.0	40.2	40.8
5	75.2	80.2	82.1	115.3	120.4	123.1	153.8	160.9	164.1	190.2	201.0	203.9
10	150.4	160.3	164.2	230.5	240.7	246.2	307.7	321.7	328.1	380.4	402.0	407.8
15	225.7	240.5	246.2	345.8	361.1	369.3	461.5	482.6	492.2	570.6	603.0	611.7
20	300.9	320.6	328.3	461.0	481.5	492.5	615.3	643.5	656.3	760.8	804.0	815.7
				Low Spe	eed (Cor	nect in S	Star 人)					
1	11.0	11.3	11.2	16.3	16.8	16.8	21.7	22.3	22.4	27.3	28.0	27.7
5	55.0	56.4	55.9	81.6	84.1	83.8	108.7	111.5	111.8	136.6	140.0	138.7
10	110.0	112.8	111.9	163.2	168.2	167.6	217.3	223.0	223.6	273.1	280.0	277.3
15	165.1	169.2	167.8	244.9	252.3	251.4	326.0	334.5	335.3	409.7	420.1	416.0
20	220.1	225.6	223.7	326.5	336.4	335.3	434.7	446.0	447.1	546.2	560.1	554.6


Capacity
Correction Factors
REFRIG. R22 R507A R40


VB Series Condensers - Dimensions


Note: All models have been reduced in O/All width for ease of transport.

Models VB-4-4R to VB-6 6R, VB-8-6R, VB-10-4R, VB-10-6R

Models VB-8-4R, VB-8 5R, VB-10-5R

Note:

- Must be installed level
- Must be fully supported on each mounting foot

Physical Data (All Series)

MODEL:		VB-4-4R	VB-4-5R	VB-4-6R	VB-6-4R	VB-6-5R	VB-6-6R	VB-8-4R	VB-8-5R	VB-8-6R	VB-10-4R	VB-10-5R	VB-10-6R
No. of Rows		4	5	6	4	5	6	4	5	6	4	5	6
Tubes Wide		112	112	112	112	112	112	112	112	112	112	112	112
Inlet Connections	mm	54	54	54	54	66.7	66.7	66.7	66.7	76.2	76.2	76.2	76.2
Outlet Connections	mm	54	54	54	54	66.7	66.7	66.7	66.7	66.7	66.7	66.7	66.7
*Operating Charge R22	(kg)	34	41	48.5	50	61	72	64.5	79	94	79	97	115
**Pump Down Capacity	(kg)	110.0	135.0	160.5	173.0	210.5	248.0	221.5	271.0	320.0	269.5	331.0	401.0
Dimensions (mm):	A	1915	1915	1915	2895	2895	2895	3875	3875	3875	4855	4855	4855
	В	2335	2335	2335	3315	3315	3315	4475	4475	4295	5275	5455	5275
Crated Dimmensions (mm):	L	2535	2535	2535	3515	3515	3515	4675	4675	4675	5655	5655	5655
	W	2375	2375	2375	2375	2375	2375	2375	2375	2375	2375	2375	2375
	н	2475	2475	2475	2475	2475	2475	2475	2475	2475	2475	2475	2475
Crated Volume	m ³	15.06	15.06	15.06	20.88	20.88	20.88	27.77	27.77	27.77	33.59	33.59	33.59

^{*}Based on -4°C SST, +25°C Suction gas temperature, 40°C Condensing and 2°C Sub cooling.

^{**}Pump down capacity based on 80% of total volume - Refrigerant R22.

Heat Rejection Factors

Total Heat Rejection (Kilowatts)

Condenser Load = Compressor Capacity x Factor

Open Compressors Tables No.1

Suction Cooled Hermetic Compressors Table No.2

		Condens	ing Tempe	erature °C			Evap. Temp.			Condens	ing Tempe	erature °C		
30	35	40	45	50	55	60	°C	30	35	40	45	50	55	60
1.41	1.45	1.50	1.56				-40	1.63	1.67	1.74	1.80	•		
1.37	1.40	1.45	1.50	1.56		•	-35	1.56	1.59	1.65	1.71	1.77	•	•
1.33	1.36	1.40	1.45	1.50	1.50		-30	1.50	1.53	1.58	1.63	1.69	1.75	•
1.28	1.31	1.35	1.39	1.44	1.49	1.55	-25	1.43	1.46	1.50	1.55	1.61	1.66	1.73
1.25	1.28	1.31	1.35	1.40	1.44	1.49	-20	1.38	1.41	1.45	1.49	1.55	1.59	1.65
1.21	1.24	1.28	1.31	1.35	1.39	1.44	-15	1.32	1.35	1.40	1.43	1.47	1.52	1.57
1.18	1.21	1.24	1.27	1.31	1.35	1.39	-10	1.28	1.31	1.35	1.38	1.42	1.46	1.51
1.15	1.18	1.21	1.24	1.27	1.31	1.35	-5	1.24	1.27	1.30	1.34	1.37	1.41	1.45
1.12	1.15	1.18	1.20	1.24	1.27	1.31	0	1.20	1.23	1.26	1.29	1.33	1.36	1.40
1.10	1.12	1.15	1.17	1.20	1.24	1.27	5	1.16	1.18	1.21	1.23	1.26	1.31	1.34
1.07	1.10	1.13	0.07	1.17	1.21	1.24	10	1.12	1.15	1.18	1.20	1.22	1.27	1.30

^{*} Outside Limits of Normal Single Stage Compression Application.

Selection Example

Compressor Capacity 480kW (Hermetic Compressor)

Refrigerant

R404A +5°C

Suction Temperature Air Temp, on entering condenser +35°C

+50°C (High speed fan)

Required condensing temp. Temp. difference (TDK)

= 15K TD = 1.26

Heat rejection factor (Table 1) Total heat rejection required

 $= 480 \times 1.26$ = 604.8

Selected model VB-8-5R-4P

which has a capacity of 623.9kW at 15K TD

Actual TD = 604.8 - 41.6 = 14.54K TD The heat load on a compressor always exceeds that of the evaporator by an amount equal to the heat of compression. Since the work (heat) of compression per unit of refrigeration capacity changes depending upon the compression ratio, the heat load on the condenser varies with the operating conditions of the system and compressor design or type - that is, open or suction cooled hermetics.

For this reason, whenever possible the selection of an air cooled condenser should be based on the compressor manufacturers published heat rejection ratings and operating limitations applicable to that particular machine. In the absence of manufacturers data, the condenser heat rejection factor tables listed may be used to obtain an approximate heat of rejection.

Standard Features

- · All fans statically and dynamically balanced, aerodynamically constructed for economical and quiet operation.
- · Sickle Blade Fans.
- · Dual speed motors standard on 3 Phase

- 1310/1000 R.P.M (VB-4P)

- 880/660 R.P.M (VB-Q) - 680/530 R.P.M (VB-NQ)

- 630/400 R.P.M (VB-SQ)

- . Motors to be wired to common junction box (High Speed).
- 12.7mm diameter copper tube expanded into ripple aluminium coil blocks (472 Fins/m)
- Internal ripple finned copper tube.
- All 1.6mm Marine Grade (5251) aluminium casing.
- Positive air seal between all fans.

Optional extra's

- Epoxy coated or Copper fins
- Single circuits
- · Stainless case
- Special application hazardous motors (Flame proof)
- . DRY Cooler circuits
- · OIL Cooler circuits

Technical Data

Technical Data

MODEL: VB - 4P	VB-4-4R-4P	VB-4-5R-4P	VB-4-6R-4P	VB-6-4R-4P	VB-6-5R-4P	VB-6-6R-4P	VB-8-4R-4P	VB-8-5R-4P	VB-8-6R-4P	VB-10-4R-4P	VB-10-5R-4P	VB-10-6R-4P
Air Flow High I/sec	20408	19958	19508	30610	29936	29260	40814	39914	39014	51018	49894	48768
Air Flow Low //sec	15756	15370	14982	23634	23056	22474	31514	30742	29964	39392	38426	37456
No. of Motors (630mm)	4	4	4	6	6	6	8	8	8	10	10	10
Motor Power: High Speed												
Total Watts - 3 Phase	10400	10400	10400	15600	15600	15600	20800	20800	20800	26000	26000	26000
Total Amps - 3 Phase*	19.2	19.2	19.2	28.8	28.8	28.8	38.4	38.4	38.4	48	48	48
Motor Power: Low Speed												
Total Watts - 3 Phase	6400	6400	6400	9600	9600	9600	12800	12800	12800	16000	16000	16000
Total Amps - 3 Phase*	10.8	10.8	10.8	16.2	16.2	16.2	21.6	21.6	21.6	27	27	27
Weight Unpacked (kg)	527	650	697	768	964	1034	1022	1267	1357	1264	1568	1680

MODEL: VB - Q		VB-4-4R-Q	VB-4-5R-Q	VB-4-6R-Q	VB-6-4R-Q	VB-6-5R-Q	VB-6-6R-Q	VB-8-4R-Q	VB-8-5R-Q	VB-8-6R-Q	VB-10-4R-Q	VB-10-5R-Q	VB-10-6R-Q
Air Flow High	V/sec	22126	21072	20122	33188	31610	30182	44252	42146	40244	55314	52682	50304
Air Flow Low	Vsec	17586	16676	15860	26380	25014	23788	35174	33352	31718	43966	41690	39648
No. of Motors (800mm)		4	4	4	6	6	6	8	8	8	10	10	10
Motor Power: High Spe	ed												
Total Watts - 3 Phase		8000	8000	8000	12000	12000	12000	16000	16000	16000	20000	20000	20000
Total Amps - 3 Phase*		16	16	16	24	24	24	32	32	32	40	40	40
Motor Power: Low Spee	ed												
Total Watts - 3 Phase		5000	5000	5000	7500	7500	7500	10000	10000	10000	12500	12500	12500
Total Amps - 3 Phase*		9.2	9.2	9.2	13.8	13.8	13.8	18.4	18.4	18.4	23	23	23
Weight Unpacked (kg)		569	692	740	831	1028	1097	1107	1351	1441	1369	1673	1785

MODEL: VB - NQ	VB-4-4	R-NQ	VB-4-5R-NO	VB-4-6R-NQ	VB-6-4R-NO	VB-6-5R-NO	VB-6-6R-NQ	VB-8-4R-NQ	VB-8-5R-NQ	VB-8-6R-NQ	VB-10-4R-NQ	VB-10-5R-NQ	VB-10-6R-NO
Air Flow High 1/s	ec 171	64	16362	15624	25746	24544	23436	34326	32726	31248	42908	40908	39058
Air Flow Low //s	ec 136	82	12946	12278	20522	19418	18418	27362	25892	24556	34202	32364	30696
No. of Motors (800mm)	4		4	4	6	6	6	8	8	8	10	10	10
Motor Power: High Speed									-				
Total Watts - 3 Phase	420	00	4200	4200	6300	6300	6300	8400	8400	8400	10500	10500	10500
Total Amps - 3 Phase*	9.6	6	9.6	9.6	14.4	14.4	14.4	19.2	19.2	19.2	24	24	24
Motor Power: Low Speed	100											A	
Total Watts - 3 Phase	308	80	3080	3080	4620	4620	4620	6160	6160	6160	7700	7700	7700
Total Amps - 3 Phase*	6		6	6	9	9	9	12	12	12	15	15	15
Weight Unpacked (kg)	56	9	692	740	831	1028	1097	1107	1351	1441	1369	1673	1785

MODEL: VB - SQ		VB-4-4R-SQ	VB-4-5R-SQ	VB-4-6R-SQ	VB-6-4R-SQ	VB-6-5R-SQ	VB-6-6R-SQ	VB-8-4R-SQ	VB-8-5R-SQ	VB-8-6R-SQ	VB-10-4R-SQ	VB-10-5R-SQ	VB-10-6R-SC
Air Flow High	l/sec	16090	15292	14574	24134	22938	21860	32178	30584	29146	40224	38230	36434
Air Flow Low	l/sec	10960	10300	9726	16440	15450	14588	21920	20600	19452	27400	25750	24314
No. of Motors (800mm)		4	4	4	6	6	6	8	8	8	10	10	10
Motor Power: High Speed							-						
Total Watts - 3 Phase		3720	3720	3720	5580	5580	5580	7440	7440	7440	9300	9300	9300
Total Amps - 3 Phase*		8	8	8	12	12	12	16	16	16	20	20	20
Motor Power. Low Speed			-	-		-							
Total Watts - 3 Phase		1880	1880	1880	2820	2820	2820	3760	3760	3760	4700	4700	4700
Total Amps - 3 Phase*		4	4	4	6	6	6	8	8	8	10	10	10
Weight Unpacked (kg)		556	676	727	812	1009	1078	1081	1326	1416	1338	1642	1753

^{*}Based on Manufacturer's Nominal data, actual Amps may vary.

Sound Data

Sound Data

Model	No. of fans	Speed	Sound Power Level, dB (re 1pW) Octave Band Centre Frequency (Hz)							Noise Rating	Sound Pressure
			VB (4P Series)	4	High	98	94	90	88	86	83
Low	92	88			83	82	80	76	69	64	69
6	High	100		96	92	90	88	85	79	72	77
	Low	94		90	85	84	82	78	71	66	71
8	High	101		97	93	91	89	86	80	73	78
	Low	95		91	86	85	83	79	72	67	72
10	High	102		98	94	92	90	87	81	74	79
	Low	96		92	87	86	84	80	73	68	73
VB (Q Series)	4	High	98	91	87	86	86	79	70	68	72
		Low	90	84	84	84	80	72	62	64	68
	6	High	100	93	89	88	88	81	72	70	74
		Low	92	86	86	86	82	74	64	66	70
	8	High	101	94	90	89	89	82	73	71	75
		Low	93	87	87	87	83	75	65	67	71
	10	High	102	95	91	90	90	83	74	72	76
		Low	94	88	88	88	84	76	66	68	72
VB (NQ Series)	4	High	86	81	79	79	74	67	64	61	65
		Low	79	77	78	76	69	61	55	58	62
	6	High	88	83	81	81	76	69	66	63	67
		Low	81	79	80	78	71	63	57	60	64
	8	High	89	84	82	82	77	70	67	64	68
		Low	82	80	81	79	72	64	58	61	65
	10	High	90	85	83	83	78	71	68	65	69
		Low	83	81	82	80	73	65	59	62	66
VB (SQ Series)	4	High	83	83	80	81	77	71	65	61	65
		Low	76	76	72	72	66	60	52	52	56
	6	High	85	85	82	83	79	73	67	63	67
		Low	78	78	74	74	68	62	54	54	58
	8	High	86	86	83	84	80	74	68	64	68
		Low	79	79	75	75	69	63	55	55	59
	10	High	87	87	84	85	81	75	69	65	69
		Low	80	80	76	76	70	64	56	56	60

Sound Pressure Levels dB(A) re 20 µPa and Noise Rating calculated @3m distance, free field. Sound Power Levels Testing in accordance with Australian Standards AS1217.5-1985.

Contact Information

Bitzer Australia

134 Dunheved Circuit, St Marys, NSW 2760 Australia tel +61 (2) 8801 9300 fax +61 (2) 9673 4698 info@bitzer.com.au

Victoria

tel +61 (3) 8326 8200 fax +61 (3) 9310 2520

Queensland

tel +61 (7) 3274 3620 fax +61 (7) 3274 3621

South Australia

tel +61 (8) 8268 4500 fax +61 (8) 8268 4555

Western Australia

tel +61 (8) 9359 2066 fax +61 (8) 9359 2077

Bitzer New Zealand

Bitzer Australia Pty Ltd 13b Airborne Rd Albany 0632 North Shore City New Zealand tel +64 (9) 9415 2030 fax +64 (9) 9415 2031

Bitzer Refrigeration Asia Limited

200 Cantonment Road #06-02A, Southpoint, Singapore 089763 tel +65 6220 4942 fax +65 6220 4794 systems@bitzer.com.sg www.bitzer.com.sg

Bitzer India

618 6th Floor, Nimal Lifestyle Corporate Office Building Maharashtra India tel +91 22 25 67 60 06-9 tax +91 22 25 67 60 11 customercare@bitzer.in

www.bitzer.com.au www.buffalotrident.com

Other Products Available

VB Hydro-Boost Condenser
4, 6, 8, 10 Fan Models
Epoxy Coated Fins
High Quality Axial Fans
Pre-Cooler Pad System
Easy Access Pre-Cooler Pads
Stainless Steel Pumps
Optional ECCI Controller

BR Series

- Induced draught evaporators
- 1 5 fans (300mm & 350mm)

RC-C Series

- Condensers
- 1 4 fans
- 350mm & 500mm fans
- Quiet fan options

Distributed By:

In the interest of continuous improvement BITZER reserves the right to change the specifications or design of any of its products without notice. The BITZER Symbol, name Bitzer Group of Companies and model names are registered trade marks. All products manufactured are pending design and specification registration and must not be copied or duplicated in any way.

ISSUE: MAY 2009